Learning to Assess the Quality of Stroke Rehabilitation Exercises

Due to the limited number of therapists, task-oriented exercises are often prescribed for post-stroke survivors as in-home rehabilitation. During in-home rehabilitation, a patient may become unmotivated or confused to comply prescriptions without the feedback of a therapist. To address this challenge, this paper proposes an automated method that can achieve not only qualitative, but also quantitative assessment of stroke rehabilitation exercises. Specifically, we explored a threshold model that utilizes the outputs of binary classifiers to quantify the correctness of a movements into a performance score. We collected movements of 11 healthy subjects and 15 poststroke survivors using a Kinect sensor and ground truth scores from primary and secondary therapists. The proposed method achieves the following agreement with the primary therapist: 0.8436, 0.8264, and 0.7976 F1-scores on three task-oriented exercises. Experimental results show that our approach performs equally well or better than multi-class classification, regression, or the evaluation of the secondary therapist. Furthermore, we found a strong correlation (R 2 = 0.95) between the sum of computed exercise scores and the Fugl-Meyer Assessment scores, clinically validated motor impairment index of post-stroke survivors. Our results demonstrate a feasibility of automatically assessing stroke rehabilitation exercises with the decent agreement levels and clinical relevance.


Reference:

Hun Lee, M., Siewiorek, D. P., Smailagic, A., Bernardino, A., & Bermudez i Badia, S. (2019). Learning to assess the quality of stroke rehabilitation exercises. Presented at the n 24th International Conference on Intelligent User Interfaces (IUI ’19), Marina del Rey, CA, USA.

Comments